Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Over the past decade, several urban visual analytics systems and tools have been proposed to tackle a host of challenges faced by cities, in areas as diverse as transportation, weather, and real estate. Many of these tools have been designed through collaborations with urban experts, aiming to distill intricate urban analysis workflows into interactive visualizations and interfaces. However, the design, implementation, and practical use of these tools still rely on siloed approaches, resulting in bespoke systems that are difficult to reproduce and extend. At the design level, these tools undervalue rich data workflows from urban experts, typically treating them only as data providers and evaluators. At the implementation level, they lack interoperability with other technical frameworks. At the practical use level, they tend to be narrowly focused on specific fields, inadvertently creating barriers to cross-domain collaboration. To address these gaps, we present Curio, a framework for collaborative urban visual analytics. Curio uses a dataflow model with multiple abstraction levels (code, grammar, GUI elements) to facilitate collaboration across the design and implementation of visual analytics components. The framework allows experts to intertwine data preprocessing, management, and visualization stages while tracking the provenance of code and visualizations. In collaboration with urban experts, we evaluate Curio through a diverse set of usage scenarios targeting urban accessibility, urban microclimate, and sunlight access. These scenarios use different types of data and domain methodologies to illustrate Curio’s flexibility in tackling pressing societal challenges. Curio is available at urbantk.org/curio.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Over the past decade, there has been a significant increase in the development of visual analytics systems dedicated to addressing urban issues. These systems distill intricate urban analysis workflows into intuitive, interactive visual representations and interfaces, enabling users to explore, understand, and derive insights from large and complex data, including street-level imagery, street networks, and building geometries. Developing urban visual analytics systems, however, is a challenging endeavor that requires considerable programming expertise and interaction between various multidisciplinary stakeholders. This situation often leads to monolithic and isolated prototypes that are hard to reproduce, combine, or extend. Concurrently, there has been an increase in the availability of general and urban-specific toolkits, frameworks, and authoring tools that are open source and abstract away the need to implement low-level visual analytics functionalities. This paper provides a hierarchical taxonomy of urban visual analytics systems to contextualize how they are usually designed, implemented, and evaluated. We develop this taxonomy across three distinct levels (i.e., dimensions, categories, and tags), juxtaposing visualization with analytics, data, and system dimensions. We then assess the extent to which current open-source toolkits, frameworks, and authoring tools can effectively support the development of components tailored to urban visual analytics, identifying their strengths and limitations in addressing the unique challenges posed by urban data. In doing so, we offer a roadmap that can guide the effective employment of existing resources and chart a pathway for developing and refining future systemsmore » « less
-
Urbanization has amplified the importance of three‐dimensional structures in urban environments for a wide range of phenomena that are of significant interest to diverse stakeholders. With the growing availability of 3D urban data, numerous studies have focused on developing visual analysis techniques tailored to the unique characteristics of urban environments. However, incorporating the third dimension into visual analytics introduces additional challenges in designing effective visual tools to tackle urban data's diverse complexities. In this paper, we present a survey on visual analytics of 3D urban data. Our work characterizes published works along three main dimensions, why, what, and how, considering use cases, analysis tasks, data, visualizations, and interactions. We provide a fine‐grained categorization of published works from visualization journals and conferences, as well as from a myriad of urban domains, including urban planning, architecture, and engineering. By incorporating perspectives from both urban and visualization experts, we identify literature gaps, motivate visualization researchers to understand challenges and opportunities, and indicate future research directions.more » « less
-
null (Ed.)Urban planning is increasingly data driven, yet the challenge of designing with data at a city scale and remaining sensitive to the impact at a human scale is as important today as it was for Jane Jacobs. We address this challenge with Urban Mosaic, a tool for exploring the urban fabric through a spatially and temporally dense data set of 7.7 million street-level images from New York City, captured over the period of a year. Work- ing in collaboration with professional practitioners, we use Urban Mosaic to investigate questions of accessibility and mobility, and preservation and retrofitting. In doing so, we demonstrate how tools such as this might provide a bridge between the city and the street, by supporting activities such as visual comparison of geographically distant neighborhoods, and temporal analysis of unfolding urban development.more » « less
-
The recent explosion in the number and size of spatio-temporal data sets from urban environments and social sensors creates new opportunities for data-driven approaches to understand and improve cities. Visual analytics systems like Urbane aim to empower domain experts to explore multiple data sets, at different time and space resolutions. Since these systems rely on computationally-intensive spatial aggregation queries that slice and summarize the data over different regions, an important challenge is how to attain interactivity. While traditional pre-aggregation approaches support interactive exploration, they are unsuitable in this setting because they do not support ad-hoc query constraints or polygons of arbitrary shapes. To address this limitation, we have recently proposed Raster Join, an approach that converts a spatial aggregation query into a set of drawing operations on a canvas and leverages the rendering pipeline of the graphics hardware (GPU). By doing so, Raster Join evaluates queries on the fly at interactive speeds on commodity laptops and desktops. In this demonstration, we showcase the efficiency of Raster Join by integrating it with Urbane and enabling interactivity. Demo visitors will interact with Urbane to filter and visualize several urban data sets over multiple resolutions.more » « less
-
Advances in technology coupled with the availability of low-cost sensors have resulted in the continuous generation of large time series from several sources. In order to visually explore and compare these time series at different scales, analysts need to execute online analytical processing (OLAP) queries that include constraints and group-by's at multiple temporal hierarchies. Effective visual analysis requires these queries to be interactive. However, while existing OLAP cube-based structures can support interactive query rates, the exponential memory requirement to materialize the data cube is often unsuitable for large data sets. Moreover, none of the recent space-efficient cube data structures allow for updates. Thus, the cube must be re-computed whenever there is new data, making them impractical in a streaming scenario. We propose Time Lattice, a memory-efficient data structure that makes use of the implicit temporal hierarchy to enable interactive OLAP queries over large time series. Time Lattice is a subset of a fully materialized cube and is designed to handle fast updates and streaming data. We perform an experimental evaluation which shows that the space efficiency of the data structure does not hamper its performance when compared to the state of the art. In collaboration with signal processing and acoustics research scientists, we use the Time Lattice data structure to design the Noise Profiler, a web-based visualization framework that supports the analysis of noise from cities. We demonstrate the utility of Noise Profiler through a set of case studies.more » « less
An official website of the United States government
